Higher Auslander algebras admitting trivial maximal orthogonal subcategories

نویسندگان

  • Zhaoyong Huang
  • Xiaojin Zhang
چکیده

For an Artinian (n− 1)-Auslander algebra Λ with global dimension n(≥ 2), we show that if Λ admits a trivial maximal (n − 1)-orthogonal subcategory of modΛ, then Λ is a Nakayama algebra. Further, for a finite-dimensional algebra Λ over an algebraically closed field K, we show that Λ is a basic and connected (n−1)-Auslander algebra Λ with global dimension n(≥ 2) admitting a trivial maximal (n− 1)-orthogonal subcategory of modΛ if and only if Λ is given by the quiver: 1 2 β1 oo 3 β2 oo · · · β3 oo n+ 1 βn oo modulo the ideal generated by {βiβi+1|1 ≤ i ≤ n − 1}. As a consequence, we get that a finite-dimensional algebra over an algebraically closed field K is an (n− 1)-Auslander algebra with global dimension n(≥ 2) admitting a trivial maximal (n − 1)-orthogonal subcategory if and only if it is a finite direct product of K and Λ as above.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

9 Higher Auslander Algebras Admitting Trivial Maximal Orthogonal Subcategories

For an Artinian (n− 1)-Auslander algebra Λ with global dimension n(≥ 2), we show that if Λ admits a trivial maximal (n − 1)-orthogonal subcategory of modΛ, then Λ is a Nakayama algebra and the projective or injective dimension of any indecomposable module in modΛ is at most n− 1. As a result, for an Artinian Auslander algebra with global dimension 2, if Λ admits a trivial maximal 1-orthogonal s...

متن کامل

Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories

We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...

متن کامل

Higher Auslander-Reiten theory on maximal orthogonal subcategories

We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...

متن کامل

Ju n 20 09 Trivial Maximal 1 - Orthogonal Subcategories For Auslander ’ s 1 - Gorenstein Algebras

Let Λ be an Auslander’s 1-Gorenstein Artinian algebra with global dimension two. If Λ admits a trivial maximal 1-orthogonal subcategory of modΛ, then for any indecomposable module M ∈ modΛ, we have that the projective dimension of M is equal to one if and only if so is its injective dimension and that M is injective if the projective dimension of M is equal to two. In this case, we further get ...

متن کامل

Trivial Maximal 1 - Orthogonal Subcategories For Auslander ’ s 1 - Gorenstein Algebras ∗ †

Let Λ be an Auslander’s 1-Gorenstein Artinian algebra with global dimension 2. If Λ admits a trivial maximal 1-orthogonal subcategory of modΛ, then for any indecomposable module M ∈ modΛ, we have that the projective dimension of M is equal to 1 if and only if so is its injective dimension and that M is injective if the projective dimension of M is equal to 2, which implies that Λ is almost here...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009